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Abstract-Freezing of an initially superheated water filled within an axisymmetric enclosure is studied 
numerically. Simulation is carried out using a computational method recently developed by the authors to 
treat moving boundary problems in axisymmetric geometries. Emphasized is the influence of both volume 
expansion and density anomaly upon freezing via natural convection. Two distinctive types of thermal 
boundary conditions are identified and utilized to guide our efforts to investigate the freezing process. Due 
to the density anomaly of pure water, fluid flow direction reverses depending on the initial superheat of 
water and thereby the interface slope exhibits an inversion behavior. By assuming that the water does not 
flood over the ice surface, the volume-change-induced rise of ice formed results in a substantially curved 
surface. Effects of several parameters characterizing phase-change process of interest are investigated. 
Numerical results clearly reveal that freezing undergoes multiple stages and proceeds in a complicated 

manner especially when the water is superheated over the density-extremum temperature. 

INTRODUCTION 

THE INFLUENCE of natural convection on the process 
of solidification/melting has been extensively studied 
in recent decades. A comprehensive compilation of 
researches in this field can be found in refs. [l-3], 
among others, and hence it is not intended in this 
study to discuss in detail the current state-of-the-art of 
the present topic. Generally speaking, it is ah accepted 
fact that natural convection enhances heat transfer 
rate during melting but retards it during solidification 
[41. 

A survey of literature leads us to recognize that it 
is a premise to clarify what kinds of thermal boundary 
conditions are imposed on the liquid phase where 
natural convection of special interest occurs. For this 
issue, two essentially distinctive boundary conditions 
are identified and termed here as isolated and con- 
jugate types for the sake of concreteness. A conjugate 
type refers to the case where natural convection in the 
liquid is everlasting and sustained by a pair of heat 
source and sink ; therefore, quasi-steady assumptions 
[5-7] can be utilized in determining the flow field 
owing to the presence of its steady-state solution. Note 
that in most cases the melting process is of a conjugate 
type. On the contrary, an isolated type refers to the 
situation where natural convection eventually fades 
away. Phase-change problems of isolated type, as fre- 
quently encountered in static casting, do not allow for 
the use of the quasi-steady assumption mentioned 
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above, and thus all the transient terms should be 
accounted for. In this study, we consider a particular 
phase-change problem pertaining to an isolated 
type-freezing of initially superheated water filled 
between vertical concentric tubes which are subject to 
convective cooling at the inner tube wall and insula- 
tion otherwise. The primary objective is to provide 
necessary information in designing thermal energy 
storage systems. 

Sparrow et al. [4] performed an experimental study 
of freezing in a cylindrical enclosure. They successfully 
demonstrated the general characteristics of freezing 
subject to the thermal boundary conditions of con- 
jugate type. As such, solidification ‘terminated 
asymptotically in the case of superheated liquid, and 
this was attributed to the development of natural con- 
vection. However, it was pointed out [3] that an equi- 
librium position of the solid-liquid interface indeed 
exists even in the absence of natural convection. 
Ramachandran et al. [8] studied solidification in a 
rectangular enclosure by including the mold effect. 
Their numerical results showed the decaying of natu- 
ral convection at larger times, but still not an entire 
gamut of the multiple stages of solidification. (Sol- 
idification undergoing multiple stages is specific to 
problems of isolated type, as will be elucidated later 
in this study.) By conducting experiments on freezing 
around a vertical tube, Chun et al. [9] proposed an 
efficient method to predict the thickness of the sol- 
idified layer from the measured temperature of the 
tube wall. 

Unlike normal fluids, pure water exhibits an eccen- 
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NOMENCLATURE 

cr specific heat ratio, cs/cL xi (.rO) radius of inner (outer) tube [m] 
l’sr latent heat [J kg-‘] S‘ interface position [ml. 
/rL(hS) liquid (solid) phase enthalpy [J kg-‘] 
HO initial height of water [m] Greek symbols 
k thermal conductivity ratio, k,/k, 6,(6,) thickness of liquid (solid) phase [m] 
I length scale, .x0 --si [m] 1, r dimensionless transformed coordinates 
n’s mass of ice formed [kg] 0, dimensionless liquid bulk temperature 
111” initial mass of water [kg] f7,(6,) dimensionless liquid (solid) enthalpy 
NM, average Nusselt number 0, equal to (r,,,- T,)/AT 
PI Prandtl number V kinematic viscosity of water [m’ SK’] 
RO Rayleigh number Pr density ratio, ps/pL 
SIP Stefan number 7 dimensionless time, a,~/l’. 
I time [s] 
T temperature [“Cl Superscripts 
TO initial temperature of water [iC] 0 old time to 

T, freezing temperature of water + dimensionless 
[“Cl - average. 

T inner-tube-wall temperature [C] 
T, density extremum temperature (-4°C) Subscripts 
AT temperature scale, Tr- T [“Cl 0 initial 
VL( V,) volume occupied by the liquid a average 

(solid) phase [m’] L liquid 
x (11) radial (axial) coordinate [m] S solid. 

tric behavior, namely, the nonlinear variation of its 
density with temperature. The effect of this density 
anomaly on natural convection has been of special 
interest [IO-121. (More recent works are well docu- 
mented in ref. [12].) Here, emphasis is placed on the 
influence of the density anomaly upon phase-change 
via natural convection. A number of investigations 
have been carried out on this issue for various system 
configurations. Saitoh [I31 shows that the Nusselt 
number has a local minimum when the flow direction 
reverses due to the density inversion. Saitoh and 
Hirose [ 141 consider freezing of water around a cooled 
horizontal tube and investigate numerically the over- 
all effect of natural convection. The melting process 
of ice inside a horizontal cylinder is studied by Rieger 
and Beer [I 51. Ho and Chen [ 161 consider outward 
melting of ice around a horizontal isothermal cylinder. 
Their numerical results predict the minimum average 
heat transfer to occur at a temperature different than 
that found experimentally by Herrmann et al. [ 171. 

During phase transition, density difference between 
the solid and liquid phases causes the suction or blow- 
ing effect at the interface depending on which phase 
is at a greater density. Although the density difference 
has been commonly neglected in the literature, its 
effect increasingly called the attentions of researchers. 
Ho and Viskanta [ 181 discuss that the initial fluid flow 
during melting within a rectangular enclosure is due 
to the density difference accompanied with phase 
change. Similarly, an experimental study on melting 
inside a vertical tube [I91 reveals that fluid flow is 

initially due to the volume expansion upon melting 
but, at later stages, is primarily due to natural con- 
vection. Prusa and Yao [20] include the effect of den- 
sity difference in their analysis on melting around a 
heated horizontal cylinder, and find that temperature 
field and heat transfer rate are not affected signifi- 
cantly by the presence of density difference while the 
fluid flow is a little disturbed. Yoo and Ro [21] present 
a numerical simulation of melting within a rectangular 
enclosure considering density change. They find that 
better agreement with available experimental data is 
achieved by including the effect of density change. In 
light of these increased interests, the present analysis 
is tailored to account for the effect of density change 
for a quantitative investigation. 

ANALYSIS 

Problem description and physical model 
A schematic of the physical model for the ice-water 

system considered in this study is depicted in Fig. 1. 
As shown there, a containment vessel composed of 
two concentric tubes is placed vertically, and water is 
partially filled within the enclosure up to an initial 
height H,. An air gap is reserved on the top part of 
the enclosure to allow for volume expansion. The 
water is initially at a uniform temperature TO above its 
freezing temperature T, = 0°C. The top and bottom 
sides of the containment vessel as well as its outer tube 
wall are kept thermally insulated. At time I = 0, the 
outside temperature of the inner tube wall is suddenly 
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HO 

FIG. I. Schematic diagram describing freezing of pure water 
in an axisymmetric enclosure. 

lowered to a fixed value of T, < Tr. Then, it is idealized 
that freezing occurs instantaneousIy at the outside of 
the inner tube and that an ice front, which is axisym- 
metrical and curved smoothly, propagates outward. 
The analysis further idealizes that fluid flow in the 
liquid is two-dimensional, Newtonian and laminar. 

Basically, the freezing process under study goes 
through three stages with the passage of time. In an 
early stage of freezing, conduction is the prevailing 
mode of heat transfer and the ice front moves nearly 
parallel to the tube. After this conduction stage, natu- 
ral convection becomes intense enough so that con- 
vective heat transfer takes over conduction. At this 
stage, a two-dimensional freezing pattern emerges 
owing to the nonuniform heat transfer rate at the 
interface. At a certain time, convective motion in the 
liquid reaches its highest vigor and then starts to calm 
down because of the reduction in the driving buoy- 
ancy force. The buoyancy reduction is of course 
attributable to a gradual decrease in the liquid bulk 
temperature. At a final stage of freezing, the liquid 
superheat diminishes substantially and, therefore, 
conduction again plays a primary role of heat transfer 
mechanism. These multiple stages of freezing are, 
irrespective of the material used, characteristic of sol- 
idification occurring in a bounded domain subject to 
the thermal boundary conditions as specified here, i.e. 
the isolated type mentioned earlier. 

In addition, freezing with pure water being phase- 
change medium advances in a much more complicated 
fashion due to the well-known density inversion 
behavior in the vicinity of freezing temperature. To 
take this density anomaly of pure water into con- 
sideration, an available temperature-density cor- 

relation (in a range of O-20°C) [22] is employed here 
as in other work [ 161 

where 

PL = pm11 -P~lT~--Trnl~l (1) 

pm = 999.9720 kg m j, ,BT = 9.297173 x IO-“C-q 

T,,, = 4.029325”C, q = I .8948 16. 

The above correlation is used only in determining 
the buoyancy force per unit volume (the Boussinesq 
approximation), i.e. 

sAp = g/%-Pm I TL - Tm I” (2) 

and thermodynamic and hydrostatic pressures are 
combined such that p = p,,,+ P,,,glj. Otherwise, the 
thermophysical properties of water are assumed to be 
constant and their representative values are evaluated 
at an average (or film) temperature T, = (To+ T,)/2. 

When compared to common substances, water 
undergoes the largest density variation during liquid- 
solid phase transition (at 0°C pL = 999.84 kgm-’ 
from equation (1) and ps = 917 kg m-‘). This implies 
that the conventional assumption of negligible differ- 
ence between ice and water densities may not be suit- 
able to analyze the present problem. In this work, 
unequal densities are incorporated into the analysis 
in two ways ; one is accounting for the non-zero vel- 
ocity of liquid normal to the interface (from the inter- 
facial mass balance) and the other no overflow of 
liquid on the top solid surface. The latter is based 
on the preliminary experimental observation [23]. A 
numerical implementation of density change into the 
present formulation is discussed in depth in the fol- 
lowing section. 

The major task to be undertaken is then the numeri- 
cal integration of conservation equations over the 
solid and liquid domains whose shape and size vary 
with time. First, we write the general conservation 
equation with respect to the axisymmetric coordinate 
system in the following form 

+ g (xpud-xr~) = xs(x,y). (3) 

To circumvent the computational difficulties associ- 
ated with directly working with the time-dependent 
domains of irregular shape, an algebraic coordinate 
transformation is employed 

{ 

4+&i5, O<Y<l 

x= x1+6,(<-I), 1 <r,<2 

y=Hq. O<qGl (4) 

where 6s = xr - xi and 6, = x, - xr. Then, in the trans- 
formed coordinate the interface is immobilized at 
t = 1, and the top ice and water surfaces are immo- 
bilized at n = I at all times. It is assumed here that 
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H = H(c, t) for the solid phase and H = H(t) for the 
liquid phase. In accord with the introduction of the 
new coordinate system, the general conservation 
equation is also transformed and a complete list of 
the transformed equations is given elsewhere [24]. 

The boundary conditions are specified except at the 
interface 

T= T, at<=0 

dT/C?x = 0, u=p=O at<=2 

aTjaJ> = 0, u = u = 0 atq=O 

dT/ay = Way = 0, v = dH/dt at q = 1 (5) 

all of which should be appropriately transformed 
prior to discretization. The interfacial conditions are 
basically the same as those elaborated in ref. [24] 
except density change. For the energy equation, 
enthalpy is chosen as the dependent variable and is 
defined in each phase as 

hs = cs (Ts - Tr) - h,,, hL = cL(TL - T,). (6) 

To simplify the analysis, dimensionless groups are 
introduced such that 

VI v+=- + PI2 
UL 

) p =7, pr=; 
PaUL 

Ra = P” gPdAT)y~3 c,AT 

Pa %.V 
, Ste = h. 

rr 
(7) 

Accordingly, the dimensionless conservation equa- 
tions used in the analysis are obtained and sum- 
marized in Table I. 

Solution procedure 
A finite control-volume approach [25] was 

employed to discretize the transformed conservation 
equations. To account for the axisymmetric geometry, 
a numerical method recently developed by Kim et 
al. [24], which is a general extension of the method 
suggested in ref. [26], was adopted for its superior 
performance in handling multiple moving boundaries 
and density difference between phases. A fundamental 
benefit of their method is that the conservation quan- 
tities are faithfully preserved. In their work, the time- 

Table I. Variables in the dimensionless governing equations 

pf f$l+ r+ s+ 

Solid pr I 0 0 
0s klcr 0 

Liquid 1 I 0 0 
u+ Pr -ap+lax+-Pr.u+l.r+2 
u+ Pr -ap+lay+ +Ra* Pr l%L-%,,,lq 

%L 1 0 

B C 

F 

G 

H 

FIG. 2. Illustration of manipulating density change. Lines 
ADG and EF are horizontal, and lines DE and GF are 

vertical. 

dependent volume elements and the combined 
pseudo-velocities are discretized according to the 
extended area rule that is self-satisfactory from the 
geometrical point of view. This elaborately designed 
procedure unveiled that the factor x due to the axisym- 
metric geometry should be dually evaluated to pre- 
serve global mass conservation. 

A nonuniform grid system is used by deploying 23 
nodes in the radial direction and 31 nodes in the 
axial direction. Such an arrangement was chosen after 
considering that the grid system of similar resolution 
[26] successfully simulated existing experimental 
results [S]. For the start-up of computation, an ice 
layer of thickness 8,/x, = 0.01 is assumed to exist 
initially. The interface movement is controlled by 
using a variable time step such that the maximum 
changes in both 6, and & remain within I %. 

Figure 2 illustrates schematically how to manipu- 
late volume expansion upon freezing. It is assumed 
that the height of the free surface is a function of time 
only. Suppose that the domain boundaries of the solid 
and liquid phases are all known at the old time to. In 
Fig. 2, AB designates the interface ; AA’ the ice top 
surface ; and ADG the free surface at time f ‘, respec- 
tively. Since the ice remains motionless during solidi- 
fication, only a part of it is shown in the Figure. 
The interface is approximated by a cluster of points 
marked by circles but only a few points are drawn 
to aid visual clarity. With the known temperature 
distribution in each phase, the interfacial mass flux 
can be found from the conservation of heat flux across 
the interface (details are given in ref. [24]). Then, a 
tentative interface position is obtained by translating 
the circles in a horizontal direction and falling onto 
the triangles, as shown in the Figure. To consider the 
density difference between ice and water, an overall 
mass balance is utilized to explicitly determine the new 
height of the free surface 

(p,-p,)e(ABCD) = p,ti(ADE)+p,fi(DEFG) (8) 
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where ri(ABCD) denotes the positive value of the 
volume enclosed by ABCD, and so forth. Finally, the 
interface position at the new time t”+Az is deter- 
mined by proper interpolation of the tentative inter- 
face, as indicated by the circles on the dotted line 
in Fig. 2. Then, AE designates the newly-formed ice 
surface and EF represents the free surface at time 
~“+A.I. Similarly, the ice top surface is also redistri- 
buted by interpolation. This procedure was preferred 
due to its simplicity, and it was justified from the 
fact that an overall mass balance (i.e. the condition 
m, = ps Vs+pL Vc) was satisfied to within 0.0001% at 
each time step. Also, an overall energy balance was 
checked at each time step and found to be satisfied to 
within a tolerance of 0. I %. 

RESULTS AND DISCUSSION 

Numerical simulation of freezing of water filled 
within vertical concentric tubes was carried out for 
two inner-tube-wall temperatures, T, = - 10, - 2O"C, 
and three initial superheats of water, To = 4, 10, 15°C 
(Pr = 13.55; Ra = 3.03 x 10’ and Ste = 0.131 for 
T,= -10°C; Ra= 1.13~10~ and Sre=0.262 for 
T, = -20°C). The system configuration was fixed 
with X, = 1 cm, .Y, = I 1 cm and Ho = 20 cm. Together 
with the numerical solution to the present formu- 
lation, one-dimensional pure conduction solution was 
obtained for comparison by neglecting the convective 
motion -due to the buoyancy and density change. 

Before we discuss our numerical results, we hope to 
mention several basic features specific to the present 
problem. In this regard, Fig. 3 is prepared in which 
pure conduction solution is drawn schematically. In 
the absence of convection the interface and isotherms 
advance perfectly parallel to the tube wall, as shown 
in the upper panel. For brevity, the case T,, > T,,, is 
considered in the Figure, and the freezing and density- 
inversion isotherms (i.e. T, and T,,,) are highlighted 

I 
‘i Xf X0 

FIG. 3. Pure conduction solution at a certain time. The 
drawing is not to scale. 

due to their significance (the latter isotherm does not 
exist when T,, < T,,,). In the lower panel, the under- 
lying assumption of the continuity of temperature is 
clearly stated. Now, suppose that natural convection 
is promptly taken into consideration from this point 
on. It is then likely that at least qualitative trends can 
be inferred from the Figure. Firstly, in the case of 
7’, < T, only a single vortex circulating clockwise 
develops in the liquid. Secondly, when T, > T,,,, 
double vortices would develop on both sides of the 
T,-isotherm with their flow directions opposite to each 
other, as shown in the Figure. For the Prandtl number 
of unity, the T,,,-isotherm would closely coincide with 
the boundary separating the two vortices. Noting that 
the counterclockwise circulation is sponsored by the 
liquid superheat over the temperature T,,,, we antici- 
pate that it will eventually die out with disappearance 
of the T,,,-isotherm. Meanwhile, the clockwise cir- 
culation enjoys longevity until the water is completely 
saturated. This implies that coexistence ofdouble vor- 
tices takes place for a limited duration of time even 
when T,, > T,,,. 

Figure 4 provides sequential contour plots to 
expose the timewise progression of fluid flow and tem- 
perature distribution in the liquid for the case of 
To = 4°C and T, = -20°C. Stream function is defined 
as in ref. [24], and the isotherms are drawn by an equal 
increment 0.1 (To - T[). An early stage of freezing can 
be easily recognized from Fig. 4(a) in which the iso- 
therms are nearly parallel to the vertical over most 
of the height indicating the predominance of heat 
conduction. As the water close to the interface cools 
down, its density attains a value lower than that of 
the water far from the interface. Accordingly, the 
relatively lighter water moves upward along the inter- 
face, and near the top changes its ffow direction 
toward the outer tube wall. This fluid motion disturbs 
temperature distribution in the vicinity of the top 
interface such that isotherms are impelled to spread 
outward and, as a result, freezing is locally enhanced. 
On the other hand, the relatively heavier water (thus at 
higher temperature) impinges on the bottom interface, 
thereby retarding the rate of freezing due to the higher 
temperature gradient induced there. However, an aug- 
mented freezing near the top interface encounters, by 
virtue of the axisymmetric geometry, a more enlarged 
area than the average, while an impeded freezing near 
the bottom interface encounters a more contracted 
area. Therefore, the axial variation of the frozen layer 
thickness tends to be quite moderate, as opposed to 
the case of planar freezing [8]. Figure 4(a) also shows 
that, since momentum diffuses faster (Pr > I), an 
upflow region spans a wider distance than the thermal 
propagation layer. In the upper panels of Figs. 4(b)- 
(e), a succeeding deformation pattern of isotherms 
is portrayed (isotherm plots are omitted when the 
maximum temperature in the liquid is below 10% of 
the initial superheat). Because the gravity force exerts 
to stabilize the thermal field, isotherms are stratified 
outside the thermal boundary layer, as indicated by a 



2652 

B 0 
(0) (b) (d) (e> (0 (9) (h) 

FIG. 4. Sequential contour plots for isotherms (upper panels) and streamlines (lower panels) for r, = - 20°C 
and T,, = 4°C. The dimensionless time 5 is (a) 0.00074, (b) 0.0238, (c) 0.0634, (d) 0.0738, (e) 0.1476. (f) 

0.2952, (g) 0.5167 and (h) 0.8119. A real time of 30 min corresponds to 7 = 0.0238. 

stack of plateaus. An event worthy of special remark is 
spotted in Fig. 4(g) that reveals what the flow pattern 
looks like at the final stage of freezing. As is shown 
there, a weak vortex with its center located far below 
persists owing to the regional survival of a small 
amount of superheat. Moreover, a bunch of stream- 
lines are launched at the interface and travel toward 
the top free surface. This ascending fluid motion is 
caused not by buoyancy but by the incompressibility 
and density difference. Actually, it has been in the 
proximity of the interface from the beginning, and 
only at the final stage of freezing does it attain such a 
vitality as comparable to the vortex strength. Later as 
the liquid becomes completely saturated (Fig. 4(h)), 
there exists the ascending fluid motion only. 

Figure 5 exhibits how the flow pattern and isotherm 
distribution evolve with time when the initial super- 
heat is above the maximum density point. The results 
shown there are representative of freezing with 
To > T,. In Fig. 5(a), which pertains to a small 
elapsed time, the freezing and density-inversion iso- 
therms enclose so extremely narrow a region that the 
intensity of clockwise vortex is negligibly weak (see 
Fig. 3). Consequently, developed in the liquid is a 
single vortex cell the direction of which is reversed 
compared to the case of lower superheat (T,, < T,). 
The isotherms are mostly parallel to the vertical as 
well, but their lower parts stretch outward in accord 
with the flow reversal. Figure S(b) shows that a clock- 
wise vortex of small size is newly formed near the 
bottom interface. This clockwise vortex cell begins to 

mature along the interface (Fig. 5(c)). Subsequently, 
it competes with (Figs. 5(d)-(e)) and then overwhelms 
its counterpart (Figs. 5(f)-(g)). It is also noted that 
the density-inversion isotherm (the fifth one in the 
Figure, counting the interface as the first) approxi- 
mately separates two competing cells, as expected. 
The timewise deformation of isotherms occurs not so 
monotonic as in Fig. 4, but in an apparently whimsical 
manner. Especially, the isotherm patterns shown in 
Figs. 5(b) and (f) are flipped vertically in consistence 
with transposing of the dominant vortex cells. The 
final stage of freezing (Figs. 5(h)-(i)) resembles that 
shown in Fig. 4, because the liquid becomes nearly or 
completely saturated and thus the initial superheat is 
no longer a meaningful parameter. 

Figures 6 and 7 display the transient positions of 
the interface, at several prescribed times for all the 
cases considered. The thicker Iines denote the inner 
tube wall as well as the top surface of the ice. Numeri- 
cal results show that the ice top surface is noticeably 
curved upward. Since the interface movement subject 
to the temperature change-at the inner tube wall pro- 
ceeds in an analogous manner, attention is turned to 
the results shown in Fig. 6. 

In the case of lower superheat (Fig. 6(a)), the inter- 
faces appear plainly curved with mild curvatures. As 
the clockwise vortex develops in the liquid, freezing is 
expedited/hindered in the upper/lower portion. There- 
fore, the interfaces become slanted with positive 
slopes. As convective motion ceases later, the interface 
movement is primarily controlled by heat conduction, 
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(b) (d) (e> (h) (i> (f) (9) 
FIG. 5. Isotherms (upper panels) and streamlines (lower panels) for T, = -20°C and To = 10°C. The 
dimensionless time T is (a) 0.00074, (b) 0.0238. (c) 0.0634, (d) 0.0738, (e) 0.0886, (f) 0.1033, (g) 0.1476, 

(h) 0.5176 and (i) 0.8119. 

thereby driving the frozen layer thickness to be more 
uniform. Interestingly, it can be seen that the interface 
movement lags near the top enclosure at the final stage 
of freezing. This is due to the fact that heat conduction 
in the solid is apt to trek as long a distance in the top 
as it does in the bottom. 

In response to the growth history of the clockwise 
vortex cell, freezing with higher superheat gives rise 
to a complex marching pattern of the interface, as 
shown in Figs. 6(b)-(c). Initially, the frozen layer 
grows with its thickness largest in the bottom (owing 
to the presence of a single counter-clockwise vortex). 

As a small clockwise vortex cell develops near the 
bottom interface, freezing is locall~~ retarded/ 
enhanced at the foot/head of the small cell. Still, the 
predominant counter-clockwise vortex hinders the 
growth of frozen layer near the top interface (see Fig. 
S(b)). Then, the combined effect of double cells is to 
make the interface bulge outward by holding its 
two ends. As freezing continues further, protrusion of 
the interface into the liquid proceeds markedly 
(T = 0.0634). This phenomenon was also confirmed 
experimentally in ref. [23]. Until the clockwise vortex 
cell rises along the interface up to the free surface, the 

L$ = 15°C 

2 

4 

0 
0 

1 

I , 

611 1 

(4 

1 

FIG. 6. The predicted results for the interface locations at 5 = 0.0238,0.0634,0.1476,0.2952,0.5167,0.8119, 
1.1072 (left to right) for c = - 10°C. 



2654 C.-J. KIM et 01. 

To = 4°C 

s/e 

(a) 

1 ” 0 s/e 

(b) 
FIG. 7. The predicted interface locations at 5 = 0.0238,0.0634,0.1476.0.2952,0.5167,0.8119 (left to right) 

forT,= -20C. 

top edge of the interface remains anchored for a while we have m, - JI when 6, << si. At larger times (or 
indicating that heat fluxes are almost balanced there. when 6s L x,), we deduce that m, - I by taking the 
After the T,-isotherm fades away, the interface mar- leading term only. Although this analysis is not very 
ches in a way similar to the previous case of lower rigorous, it is possible to qualitatively validate the 
superheat. results shown in Fig. 8. 

Additionally, comparison with pure conduction 
solutions (symbols in the Figure) clearly reveals an 
overall role played by natural convection. Earlier, 
natural convection is contributory to global mixing 
of the thermal held and delivering more energy to the 
interface. Therefore. freezing is impeded as indicated 
by the interface lagging behind the symbols. With 
further freezing, the liquid becomes less superheated 
since more energy has been extracted from it and 
hence the average interface location catches up with 
that of the pure conduction solution. The liquid gets 
saturated sooner than the case of pure conduction, 
and freezing is, on an average, expedited. In this 
matter, Figs. 6 and 7 dictate that the higher the liquid 
superheat, the stronger the otxvdl effect of natural 
convection. This reasoning is also manifested in Fig. 
8 where the frozen mass fraction is plotted with respect 
to the dimensionless time. It can be seen that deviation 
from the pure conduction solutions magnifies with an 
increase in the liquid superheat. Also reaffirmed in 
the Figure is that freezing is initially retarded but 
is expedited finally (as demonstrated by the relative 
location of symbols to curves). In general, the ice mass 
fraction varies linearly with time except for the smal1 
times. A simple order-of-magnitude analysis would be 
helpful to explain this behavior. Let us assume that 
an average thickness of the ice layer is approximately 
& - Jt with ‘ts I proportionality factor being a moder- 
ately varying function of time. Such a notion is obvi- 
ously borrowed from the well-known Stefan solution 
for the semi-infinite plane problem where the numeri- 
cal value of Ss/ Jr remains constant. Since the frozen 
mass is approximately of the order 

The variation of normalized bulk temperature of 
water, 0,/O,,, vs the dimensionless time is shown in 
Fig. 9. The dimensionless bulk temperature of water 
was defined as 

(10) 

the value of which is evaluated by the numerical inte- 
gration. As expected, 0, decreases at a rate faster than 
the case of pure conduction. It is interesting that Or, 
vanishes at 7 - 0.4 for 7; = - lO”C, and at 7 - 0.3 
for T, = -2O”C, respectively, independent of To. This 

I  . ”  

_ T,(T) cow. cot-id. 
4--- A 

m, 10 ...._.-.. O 

m0 
-15-n 

4 - sS(sS12+xi) (9) 

0.0 2 0.5 1.0 

FIG. 8. Ice mass fraction vs dimensionless time. Symbols 
denote pure conduction solutions. 
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FIG. 9. Normalized liquid bulk temperature with respect to dimensionless time. (a) T, = - 10°C and (b) 
T, = -20°C. See Fig. 8 for legends. 

decay time seems to be rather dependent on the system 
configuration and the value of T,. Further inspection 
reveals that two curves corresponding to the cases of 
TO > T,,, merge together when T > TV. The merging 
time r,,, indeed occurs when the density-inversion iso- 
therm disappears (note that T,,, - 0.1 in Fig. 9(b) and 
7 = 0.1033 in Fig. 5(f)). It is also noted that for a 
certain duration of time below T,, ,  the rate of decrease 
in 0, is weakened noticeably, and this temporal damp- 
ing is definitely associated with the competing action 
of the double vortices. When 7 > T,,,,  Oh decreases 
monotonously as in the case of TO < T,,, 

The history of the heat transfer rate at the inner 
tube wall is depicted in Fig. 10. The average Nusselt 
number as defined in the Figure initially shows a rapid 
decrease due to the sudden jump condition at the 
tube wall, but its variation with time is substantially 
reduced later. The Nusselt numbers Nu, and Nu, rep- 
resent the dimensionless heat transfer rates evaluated 
from the steady-state pure conduction solutions by 
locating the interface at the midpoint of the enclosure 

0’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 
0.0 0.5 7 1.0 

FIG. 10. Timewise variation of the dimensionless heat trans- 
fer rate mEi, at the inner tube wall for the case of 7; = - 20°C. 

See Fig. 8 for legends. 

and at the outer tube wall, respectively. It can be seen 
that at larger times the variation of NZI, coincides well 
with that of the pure conduction solution, as can be 
expected from the marching pattern of the interfaces 
shown in Fig. 7. While Fig. 8 shows a lesser amount 
of ice formed at small times (compared to the pure 
conduction case), the variation of Nu, indicates that 
more energy is being extracted from the system ; there- 
fore, we conclude that a large proportion of the energy 
is used to extract the sensible heat of water in the 
presence of natural convection. 

SUMMARY 

Investigation on freezing of water was undertaken 
considering density anomaly and volume expansion. 
Numerical simulation of the present problem was suc- 
cessful in exemplifying the versatility of the numerical 
method developed by the authors. Two types of ther- 
mal boundary conditions were identified to dis- 
tinguish whether natural convection in the liquid 
tends to be everlasting or evanescent. This clarification 
enabled us to recognize the general characteristics of 
the freezing process considered here. In accordance 
with the imposed thermal boundary conditions, as 
identified herein, of isolated type, the effect of natural 
convection was significant at early times but damped 
out later. Inclusion of volume expansion upon freez- 
ing clearly revealed that two-dimensional freezing is 
inevitable even in the absence of natural convection. 
In general, the freezing proceeds undergoing three 
stages with time, i.e. the initial conduction-controlled 
stage followed by the convection-dominant one, and 
the final conduction-controlled stage again. Especially 
when the liquid is superheated above the density- 
extremum temperature, the transient and local charac- 
teristics of fluid flow and temperature distribution 
are markedly changing with time and thus freezing 
pattern is more complicated. An accepted fact that 
natural convection retards the movement of the inter- 
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face was also confirmed here. However, it should be 
noted that solidification itself is ultimately expedited 

because the liquid bulk temperature drops faster 
12. 

owing to the mixing-up by natural convection. 
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